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HYDRODYNAMICS OF A POINT VORTEX RING

V. L. Korobko and I. V. Chekh UDC 538.517.4

The kinematics and dynamics of a point vortex ring in an incompressible fluid and its interaction with u

surface are considered.

In [1], a circular vortex with a zcro fluid velocity on its axis is studied. The axis of the vortex is a circle
of radius R, around which the fluid motion occurs. In the present article this circle is assumed to be a closed vortex
filament with infinite circulation. In this case, when any other fluid flow is supcrposed on the circular vortex, its
axis, unlike [1], does not change its position in space, thus allowing extension of the range of imposed flows.

A solution of the problem is obtained in a toroidal coordinate system (o, 1, ¢) [2].

Kinematics of Vortex Ring. The statement of the problem of a toroidai vortex is given in [1 ]. In the case
of a point vortex the boundary conditions on the vortex axis have the form

V,>® when 7> o, (h

By integrating the continuity equation, we obtain the following cxpression for the velocity:

V,=c(r)(cht — cos 0)2. @

Let us consider a particular case that satisfies condition (1): ¢ = ¢(r) = ¢| = const. According to the boundary
condition at the symmetry point of the torus

V,=Vy=const when o=zxx, 17->0,
from Eq. (2) wec obtain ¢; = Vy/4. We now write cxpression (2) in cylindrical coordinates (z, y, @) [1, 21

4
Voa

vV, = .
(-a’+2) (O +a) + D

In projection onto the axis of the coordinates we obtain:

4 2 2 2
U = Voa (' —a = 2) 3)
- 2, 2 2, 2.3/2°
[((y—a) +2)((y+a) +2)]
4
U = - Vou 2_)'2 (4)
¥ 2 2. 2 2327
{y—a) +2) (v +a) + 21
hence, upon integration of the equations Uy =~ (1/y) - (aWpr 3z) and U, = (1/y)-(6Wy dy), we write the expression
for the stream function
22 2 2
Wy = Vot 2 ¥ *a) (5)
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Fig. 1. Variation of velocity U,/ Vy along the coordinate axes: 1) along z/a
axis; 2) along the y/a axis.
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Fig. 2. Distribution of strcamlines ¥, in flow around vortex ring; a) £ = 0.8:
D W,=-0.325;2 -025:3-02; ) k=1: 1) W, =-05;,2 -0.25; 3 -0;
ADk=15 1 W, =-1;2) —0.2247; 3) -0.2375; 4 -0.25; 5 0.325.

Vortex Ring in Uniform Rectilinear Flow. As a result of superposition of the stream functions of a toroidal
vortex Wy and of a rectilinear flow W, = V1y2/2 [11, we have W = Wy + W, or in dimensionless form (using the
notation z = z/qa, y = y/a),

2 2 2
s , ,
g = 4 -k 4y +1

v 2 AV ar s D) tat

where & = V| /Vy. Then we express the function z = z(y, &, W,) and obtain an equation for the trajectorices of the
fluid particles

1/2
z = Zy — y2 -1 . (6)

V- 2k - 4w, ?

Stationary Vortex in the Vicinity of an Impermeable Surface Perpendicular to the Vortex Symmetry Axis.
Supposc a surface lies in the xQy plane. We consider two vortices with the same directions of circulation located as
follows:

1) the axis of the first torus lies in the z = A plang;

2) the axis of the second torus lies in the z = —A plane,
~hich arc described by the stream functions Wy and W, velocitics Uy, U,;, Uy, and Uy, similarly to formulas
:3)-(5). Only for the first torus should z be replaced by z — A, and for the sccond torus, by z + A. The addition
of these two circular vortices at z = 0 vields
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Fig. 3. Distribution of strcamlines W, ncar a planc: 1) W, = -0.25; 2) -0.05;
3) -0.075; 4) —-0; a) h/a=12;b) 0.5.
U_\IZZU\] +L/}2=O, (7)

ZVOa4 (yz - az - hz)

Uy =U; + Uy = =
(b-a +D)(+a +r)T?

Thus, in order to obtain an impermeable surface, it is necessary to add a third circular vortex with the
axis located in the z = 0 plance and with the velocity profile

(/).320, U:3=—'U212 at Z=O. (8)

Procceding from Eq. (7), we assume that

(_\fz e zz)

(- a)2 + 0+ 32) ((y+ a)2 Ty 22) 13"/2

, 4
UZ3 - - 2‘/0(1

)

where U,z = (1/y)-(0W3/3dy). Then, intcgrating this cxpression and taking into account the formula for U.3, wc

have
2 2 2 2
, 2 v +h +a +:
Y, = Vo . .
3 0 Ay
2V{((y— a)2 + hE + zz) ((y + u)2 + R+ ;2 )
4
4‘/011 zy
Up=— 2 2, 2 2,2 2 327
Wy—a)y +A +2)(y+ &) +h +:20)]
We found that a stationary point voricx located near the surface at distance A is described by the following
cxpressions:

W=+ Wy + Wy, U =U, + U+ Uy, U=Uy+Uy+ Uy, (9

Results of Calculations. Figurc 1 presents the results of calculation of the velocity profiles of a stationary
vortex in space. (Curve | represents the velocity profile on the symmetry axis of the torus (v = 0).) This velocity
profile coincides with the results of |1 ] for a vortex with a zero velocity on the torus axis. Curves 2 represent the
distribution of velocities at =z = 0. The calculations were perfosmed by formula (3).

The results of the interaction of a circular vortex with a rectilinear flow are presented in Fig. 2 in the form
of streamlines depending on the cocfficient & = V7 V. From Figs. 2a and 2b (k < D) it follows that the flow has
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Fig. 4. Variation of shear stresses on a plane along the y/a axis: 1) A/a =0.5;
2) 1.

two regions: an internal vortex region and a region of flow around the toroidal vortex. As thc cocfficient & increases,
the critical points of the flow A and B come closer together and at V| = ¥V (k= 1) merge into one point 0. A further
increase in the coefficient £ leads to the appearance of a third flow region: a fluid flow moving inside thc circular
vortex along the axis of its symmetry. This is shown in Fig. 2¢, where K is the critical point (Vg = 0). Thus, here,
unlike [1], the flow velocity at infinity Us = V) is not limited by the values 0 < V| < Vj, i.e., in principle, we can
consider a circular vortex moving with any velocity. The streamlines were calculated by formula (6).

The results of calculation by the first expression of svstem (9) for the strecamlines of a stationary vortex
ncar a solid surface at different distances from it are presented in Fig. 3.

Now, we cstimate the distribution of the shear stress on a planc with liquid flow formed by a circular vortex
located in the vicinity of the planc. According to the Newton law, we have

The results of calculations in the form of the dependence of the dimensionless stresses ta/u Vg on the radial
coordinate y/« arc given in Fig. 4. The dependence corresponding to the ratio A/« = 2 is not shown, because the
maximum valuc of shear stresses at this ratio is equal to 0.1. It is scen from the figure that as the circular vortex
approaches the plane, the shear stresses increase sharply. Thus, when the ratio A7a decreases by a factor of two,
the value of ra/uVy increases by a factor of about ten. For circular vortices corresponding to Figs. 3a and 3b the
maximum shear stresses on the plane are equal to 11.6 and 1.3, respectively.

NOTATION

o, T, y, toroidal coordinates; V(V,, Vi, V), velocity of fluid particlc and its projection in toroidal
coordinates; Vy, velocity at center of vortex ring on the axis of its symmetry; =, v, ¢, cylindrical coordinates; o,
distance from the torus axis to the axis of its symmetry (02); U, U, velocities in cylindrical coordinate system;
Wy, stream function of stationary vortex ring; U, = Vi, velocity of rectilinear flow at infinity; 'y, stream function
of rectilincar flow; W = Wy + W, supcrposition of two flows; k = V,/ Vg, cocfficient of the velocity ratio; W, =
W/ V()az‘ dimensionless stream function; A, distance from axis of circular vortex to the xOy planc; 1, shear stress;

1, cocfficient of dvnamic viscosity.
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